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We are developing high-order ALE discretization methods for
large-scale hydrodynamic simulations

The Arbitrary Lagrangian-Eulerian (ALE) framework for the
equations of shock hydrodynamics is the foundation of many
large-scale simulation codes.

ALE Equations

d—’
Momentum Conservation: p (_v +c- V\‘/’) =V.o

d
Mass Conservation: d—': +c-Vp=—pV -V
. de .
Energy Conservation: p a +c-Ve ) =0:Vv
Equation of State: p = EOS(e, p)
Equation of Motion: j—x +Cc=V High-order Lagrangian simu/atin
t

ALE discretization approaches consist of:
» Lagrange phase
* mesh optimization step

« field remap step “advection”
phase

 multi-material zone treatment step ,
High-order ALE simulation
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High-order curvilinear Lagrangian discretizations pose challenges
and need a matching accurate “advection” phase

We have developed BLAST - a high-order research g /
Lagrangian hydrocode featuring:
Curvilinear mesh zones

High-order kinematic and thermodynamic fields

Exact conservation on semi-discrete level

Semi-discrete finite element method —
Q1 motion

4 Q3 motion
v
Momentum Conservation: M,— = —F -1 .
dt kinematic thermOdynamlc
Energy Conservation: Mea =FT.
dx
Equation of Motion: 1 =v

e FLOP-intensive numerical kernel (F);j = /Q( )(0 1 VW;) ¢;
t

» Generalizations of classical SGH schemes

Kolev and Rieben, A tensor artificial viscosity using a finite element approach, JCP, 2009.

Dobrey, Ellis, Kolev and Rieben, Curvilinear finite elements for Lagrangian hydrodynamics, IJNMF, 2010.

Dobreyv, Kolev and Rieben, High order curvilinear finite element methods for Lagrangian hydrodynamics, SISC, 2012.

Dobrev, Ellis, Kolev and Rieben, High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, CAF, 2012.
Dobreyv, Kolev and Rieben, High order curvilinear finite elements for elastic-plastic Lagrangian dynamics, JCP, 2013.

BLAST: High-order curvilinear finite element code for Lagrangian shock hydrodynamics, http://www.lInl.gov/casc/blast
MFEM: Parallel finite element discretization library, http://mfem.googlecode.com
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We have developed high-order extensions of classical linear and

nonlinear mesh optimization algorithms 0

X Xl

Harmonic mesh smoothing can be written in terms of a mesh
Laplacian and a smoother as a simple linear iteration:

Xn—l—l _ Xn 4 M—l(f . an)

The smoother can be used for spectral filtering.

In general, harmonic smoothing is an integral minimization problem with an energy function:

1 1
mm< Z/ Vg : vq>E> —mmZ/ W (Jg (2 W(J) =5 (] J) =5t (J7J)
The inverse-harmonic (Winslow-Crowley) method can be written as:
i ( 2. / ]T;l)> =miny | W(Jp(2))di > W(J)= %det(J) tr(J =TT

The general non-linear smoothing method can be written for any energy function as:

ntl — g [3'-[F(Xn)]_1 VF(x")

X
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We have developed high-order “pseudo-time” DG advection
algorithms for conservative and accurate remap

Advection phase

Lagrangian phase

% mesh motion
determined by
physical velocity

/7

% artificial mesh
motion, defining

the mesh velocity
% time t evolution % “pseudo-time” T

evolution

Both phases
v" material derivative based on

t=20 . o

particle trajectories

oo,
o,

dv dt Ot

. o7
Momentum Conservation: Pa: = V.o Momentum Conservation: (o) _ Vm - V(pV)
v" Deforming test functions dr
. d = d
Mass Conservation: L —pV -V de _ Mass Conservation: i Vp
dt E =0 dr
Energy Conservation: % =0:VV P d(pe) _ =
gy : P — 9 v Reynolds transport theorem Energy Conservation: o = vm V(pe)
dx 0 dp dz
Equation of Motion: — =V T~ = — +pV-v - - _ 94X
’ i .o /U(t) £ /U(t) ar O Mesh veloclty: "
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Discontinuous Galerkin weak formulation of pseudo-time
advection of discontinuous fields

dp

Element-wise weak formulation of pseudo-time advection based on: 20
linear motion (v,, = ), pseudo-time RTT and deforming test functions  |dT

o[- i(pw+pw-u:/9u-vw+pw-u=/V-(puw

:Z/V (pu)tp Z/puvw—l—/pu-nw

TeT (1) TeT (1)
—— /pu v+ S /{p uen) Mg T )
TeT (1) FeFi(r) fEFHAY

Discontinuous Galerkin method with Godunov (upwind) flux {p(u - nf)} = pu(u-ny)

o o= X [oever X [wnnioil -5 ¥ [ wenl

TeT(r) feFi(r) FEF; (1)

Matrix form assuming trial and test function in the same FEM space with mass matrix M :
8 Properties: AT1 =0 .S = ST’ S1=0

5= (Mp) = Ap ™M a
oT 5 =(A+S)+(A+S)

L -
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High-order DG advection algorithms for conservative and
accurate remap

moment-based
formulation

function-based
formulation

O AM'm| m()= [ b =Mp
or Q(7)
0

mass conservation: ((%(1Tm) — 1T8—T = (1TA)M 'm =0
Op = M (AT +2S)p
or

. . 01 —1/AT
preservation of constants, linears: 3 = -M™ (A" +25)1 =0

Finite element functions are remapped by integrating the above ODEs in pseudo-time.
The two approaches are the same on semi-discrete but differ on fully-discrete level.

Mass conservation + constant preservation can be achieved on fully-discrete level by

integrating the mass matrix in pseudo-time.

A space-time DG method related to these approaches can be viewed as high-order

generalization of the classical “swept-volume’” method.

Lawrence Livermore National Laboratory
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To ensure monotonicity for discontinuous fields, we have adapted
ideas from the FCT community

function-based M. K; here K= —(A' +2
formulation Z & 87’ Z i pi) wher ( h2e
J#1
= Monotonicity is guaranteed by lumping the HighR(e),f:;
mass matrix and enforcing:
(9,0@
= — E Ki;(pi — pj) _—

b i
Kij >0, Vj#i

= Discrete upwinding yields a monotonic 1%
order accurate solution

0500 0625 0750 0.875 1.000

= Several high-order approaches: Initial Step Function
v' Locally-scaled upwind diffusion (LSD)
v' High-order FCT (Kuzmin) sl
v' High-order OBR (Rizdal, Bochev) Upwinding

0.500  0.625 0. 750 0.875 1.000
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Locally scaled upwind diffusion is used to partially lump/upwind
the matrices based on the current solution

= Unlike FCT, we start with the high-order solution on fully-discrete level, and locally
upwind/lump to ensure monotonicity

: b - 1, if pi>pree
Monotonicity coefficient measures the i
deviation from previous min/max valuesin  #(p:i) = (1, if pi < pi™™"
a neighborhood after each time step: 0 otherwise

= The off-diagonals of the mass and advection matrices are modified after each locally
scaled upwind diffusion iteration (diagonals are modified to preserve rowsums)

M = My — pigMi; |, Ky = Ky — pg; min{0, K5, Ky}
with the symmetric monotonicity scaling factor ti; = maz(p(pi), 1(p;))

= The local diffusion coefficient is used to locally lump / upwind the matrices in an
iterative process:

1. Begin with zero value of monotonicity coefficient
2. Perform locally scaled remap step and compute monotonicity metric

3. If metric is non-zero, update monotonicity coefficient and return to step 2, else exit
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Remapping results using Locally Scaled Upwind Diffusion for a
discontinuous density field

A

0.500 0.&25 0.750 0.875 1.000 0.370 0560 0.750 0.940 1.130 0.500 0.&25 0.}50 0.875 1.000
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initial mesh and Q, density high-order fully upwinded locally scaled diffusion

Remap based on Q, Bernstein density and 100 steps of RK2. The remapped function is monotonic!
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Remapping results using Locally Scaled Upwind Diffusion for a
sharply varying density field

Remap error convergence for sharply varylng functlon .

O— T T

0.100 0.835 1.571 2306 3.042

* k%

HO L1 m = 3.0 |1

g
* k% HO L2 — m=28 i;iigi
* % % HO Linf — m=24 }é“’}{
eee ywlLl — m=038 i%H‘ﬂI
eee ywlL2 — m=08 }!”EI |
: : : : ®ee W Linf — m=06 | ‘Hsi
. . . . N B
=Sp RS R YVY DLl — m=3.0H }’HSi
‘ ‘ ‘ : YYY IDL2 — m=238 !§H=l
YVYY D Linf — m=24 |{|i=|
-1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 (7l |
1 A ||
og;o(Az)
0.100 0.835 1.571 2306 3.042 0.100 0.835 1.571 2306 3.042 0.100 0.835 1.571 2306 3.042 0.100 0.835 1 .571 2306 3.042
initial mesh and Q, density high-order fully upwinded locally scaled diffusion

Remap based on Q, Bernstein density and 100 steps of RK2. High-order approximation is recovered!
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Multi-field ALE remap is formulated as a general system of ODEs in
pseudo-time

The ALE remap step in BLAST solves the coupled function-based advection equations as
a system of ODEs using high-order explicit time integrators (e.g. RK4)

oY M, Kop
— = F(Y,7)| where Y =(p,v,e) and F(Y,7)= M, 'K, v
or Me_lKee

Density remap = pseudo-time advection of mass using discontinuous FEM space

d 0
Y yvp E/pr:_;Lpu-vw+§fjﬂpu<u-nf>uwﬂ

0
Function-based density remap:l\/[pa—p = K,p, where K, = —(A, +2S,).

—
= Ky;1=0 preservation of constants
oM
» KT1 = — P1q conservation of mass
P ot
oM
. 5 e A, - K, equivalence with moment-based remap
=

UL-12

Lawrence Livermore National Laboratory



Multi-field ALE remap is formulated as a general system of ODEs in
pseudo-time

The ALE remap step in BLAST solves the coupled function-based advection equations as
a system of ODEs using high-order explicit time integrators (e.g. RK4)

oY M, Kop
— = f'(Y, 7') where Y = (p, Vv, e) and I"(Y, 7_) = Mv_lKv Vv
ot MK, e

IE remap | advection of internal energy using discontinuous FEM space

dilp:) — - V(oe) (%/Qp(ezp) — zT:/Tp(eu-Wb)+zf:/fpu(u'nf){€}[[¢]] > %PMWWH{@MM

Function-based energy remap: Me% = K.e, where K, = —(AL + 2S.).
T

= Kel =0 preservation of constants
T OMe : : :
= Ko1=-— 5 1 conservation of internal energy if Qe C Qp
T
oM, , : e N2
" 5 A, — K, » equivalence with moment-based remap if () C @),
-

LLL13
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Multi-field ALE remap is formulated as a general system of ODEs in
pseudo-time

The ALE remap step in BLAST solves the coupled function-based advection equations as
a system of ODEs using high-order explicit time integrators (e.g. RK4)

PY% Mp_iKp p
— = f'(Y, 7') where Y = (p, Vv, e) and I"(Y, 7_) = | M, Kyv
ot M; 'K, e

Velocity remap = pseudo-time advection of momentum using continuous FEM space

LR o) o a/Qp(v-w)=—/QP(U'W"U>

dr or
, : ov T
Function-based velocity remap: Mvé?_ = K,v, where K, = —Aj,,.
T

= K,1=0 preservation of constants

e oM, . :
= Ko1=— 5 1 conservation of momentum if )y C @),

T
oM

- aTU =A, K, conservation of kinetic energy if Q% C Qp

0 (vIM,v e OV 1 5 0M,y T AT 1 + T
E( 5 )-v MvE—F?V 8TV——V AVV—|—§V (Ay +Ay)v=0
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High-order 2D Taylor-Green vortex ALE results in BLAST

103

e—e Density, order=3.448
e—e Energy, order=3.185
e—e Velocity, order=3.367

10

10°

L, Norm of the Error

10-6 -

107

Speed, up to t=0.537 (10 remaps) L, errors at t=4.0

Q,-Q, RK3SSP Lagrangian scheme, no artificial viscosity. “Eulerian” remap (to the initial mesh) of
density, velocity and energy every 20 cycles using 6 RK3SSP steps.

The overall ALE scheme preserves the high-order convergence!
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Comparing Lagrangian, Eulerian and ALE results in BLAST for the
2D Rayleigh-Taylor problem

Q,-Q; RK4 Lagrangian scheme, no artificial viscosity, time t = 4.5

[T

I i T
I O I | |

Lagrangian ALE (remap period = 10) Eulerian (remap period = 10)
1 mesh relax iter. + 2 adv. steps/remap 2 adv. steps/remap

Lawrence Livermore National Laboratory L -



1D Sod shock tube in BLAST s [ Eea

< L e Lagrangian
£ : .
= N Eulerian

= Q,-Q, RK2Avg with artificial viscosity - -+ Mono Eulerian||

= Evaluate LSD monotonicity treatment

1.0 ey R [ — Exact 1
: ' S TR Lagrangian
------ Eulerian

0.25b S— T S— SN S
: : N IETRRTS Mono Eulerian : z : % : :
LU ] o A N e o‘o uenan | : : : 7@‘ :

N | | B B
0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74
Distance

Density

Lagrangian
Eulerian
Mono Eulerian

Distance

0.84 0.86 0.88
Distance
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Triple-point — shock interaction ALE results in BLAST

= Q,-Q, RK2Avg with hyperviscosity, 256 processors

= Periodic ALE with LSD monotonicity, Q, density, and adaptive pseudotime step, t =5

ALE enables us to run the problem much faster than in Lagrangian mode!

Lawrence Livermore National Laboratory



Triple-point — shock interaction ALE results in BLAST

Q,-Q; RK4 with full anisotropic tensor artificial viscosity, 512 processors

= Eulerian ALE with no monotonicity and RK4 integrator, t=5

ALE enables us to run the problem much faster than in Lagrangian mode!

Lawrence Livermore National Laboratory



Perturbed ICF-like problem: SALE simulation in BLAST

Q,-Q, RK2Avg with artificial viscosity, 128 processors

= Periodic SALE with LSD monotonicity, tz,(').'
U4
/

SALE keeps a sharp interface, but time-stepping restrictions are not completely alleviated
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Perturbed ICF-like problem: ALE simulation in BLAST

Q,-Q; RK2Avg with artificial viscosity. 128 processors

Periodic ALE with LS

(T

NN S

SALE

ALE

[T

I

ALE enables us to run the problem much further in time!

Lawrence Livermore National Laboratory
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Multi-material treatment of high-order curvilinear zones:
material indicator functions

= The remap phase generates mixed zones, where a single 1
computational element contains multiple material states. \

= Track materials with material indicator functions:

d
k

v' discontinuous material characteristic functions are
initially approximated with high-order fields

v the material indicators move with the mesh, so their
dofs don’t change in the Lagrangian phase

Simple material indicator function and its
monotone projection with a Bernstein basis.

= Material-specific volume, mass, internal energy:

Vk:/ Uk,Mk:Z/ nkPaIEk::/ U
Q(t) Q(t) Q(t)

= Two pressure evaluation options:

Wrong initial pressure causes

'\..\ a spurious shock / rarefaction
L,

“‘g‘iw.lh\ wave near the contact

| ‘\! NG,

p=) mplpe), p=pu(pe), k= argmax(n)
k

“material mixing” “dominant material”
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Multi-material treatment of high-order curvilinear zones:
material-specific thermodynamic fields

Spurious waves are

\“\".n | removed
I\“:\\\\\b' i,

To overcome the pressure initialization issue we break
density and energy into material-specific parts:

0 >0 0 >0
pk(xa O) = p(x’ ) G ’ ek:(x7 0) = 6(x7 ) T
0 Mk = 0 M =0

Material-specific mass and internal energy:

Single-material Lagrangian FEM
Mk - / Nk PE IEk : / Nk PECE Momentum Conservation: M,— = —F-1 (Mv)l = [ pw; - W,
Q(t) Q(t) dt ¢ o /
. . . d
Lagrangian density computation: Energy Conservation: Med—: =FT-v | (Me)i; = /p@(bj
v {pr} evolved by strong mass conservation g
. . . E F f Motion: dx _ Fi; = /(0 : qu;)(ﬁj
v multi-material density p = Z Nk Pk quation of Viotion: @V Q
- y
Lagrangian internal energy computation: Multi-material Lagrangian FEM
o/ o , ,
material-specific mass matrix, stress and corner forces Momentum Conservation: M, % _ _F.1
k o
(Mg)ij = /nkpk ¢idj, (Fr)ij = / Nk (ok : V;)d; "
Q , Q Energy Conservation: Mk — d k = =F-v
v by SMC M, and {M¢} do not change in time t
. . dx
v'semi-discrete total energy conservation: F' = Z Fy Equation of Motion: U

k
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Lagrangian multi-material Triple-point — shock interaction in BLAST

= triple-point initialized at a center of a zone * Q3-Q2 method (positive Bernstein basis)

= 3 material indicator functions = material indicators use thermodynamic space

Multi-material density, t=3
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Lagrangian multi-material Triple-point — shock interaction:

evolution of material indicator functions

[T

t=0
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Lagrangian multi-material Triple-point — shock interaction:
evolution of material-specific densities

AT

T [

t=0 t=3
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Current and future work

= Preliminary results with high-order ALE
remesh+remap are promising

ALE leads to 7x speedup
t

= Several approaches (LSD, FCT) seems to
be effective for high-order monotonicity

= [nitial Lagrangian multi-material results
are encouraging

1 MPI to hybrid 16MPI+OpenMP
with Hyper-Q on 2 Kepler GPUs

875.21

= More work is needed to:
« improve monotonicity in BLAST
« remap multi-material fields

779.53

Strong Scaling on Vulcan
agrangian Sedov Problem on 131,072 zones

= Some other recent research activities

« Multi-resolution viscosity limiter for high-order
hydrodynamics (poster: T. Ellis)

High-order results with
same run time!

Time log10(s)

« ALE remap for axisymmetric and elastic-plastic
deformation problems (poster: V. Dobrev)

» Large-scale parallel scalability and GPU/multi-  Fourth order Sedov —

; ; Strong scaling —
. blast with multi- o S e e e e e s e s ¥
core acceleration (poster: V. Dobrev) resolution fimiter to 131K cores ' * < 4 500
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